Part Number Hot Search : 
HYB18 2SK2142 BDX16AA AT89C DG412F KBPC1 ACTQ433 HER10
Product Description
Full Text Search
 

To Download SNA-476-TR3 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 Product Description
Stanford Microdevices' SNA-476 is a GaAs monolithic broadband amplifier (MMIC) housed in a low-cost surface mountable stripline ceramic package. This amplifier provides 13dB of gain when biased at 70mA and 5.0V. External DC decoupling capacitors determine low frequency response. The use of an external resistor allows for bias flexibility and stability. These unconditionally stable amplifiers are designed for use as general purpose 50 ohm gain blocks. Also available in chip form (SNA-400), its small size (0.4mm x 0.4mm) and gold metallization, make it an ideal choice for use in hybrid circuits. The SNA-476 is available in tape and reel at 1000, 3000 and 5000 devices per reel.
SNA-476
DC-8 GHz, Cascadable GaAs MMIC Amplifier
Output Power vs. Frequency
22 20
Product Features * Cascadable 50 Ohm Gain Block * 13dB Gain, +17dBm P1dB * 1.5:1 Input and Output VSWR * Operates From Single Supply * Low Cost Stripline Mount Ceramic Package * Hermetically Sealed 50 Ohm Gain Blocks Applications * Narrow and Broadband Linear Amplifiers * Commercial and Industrial Applications
dBm
18 16 14 0.1 0.5 1 1.5 2 4 6 8 10
GHz
Electrical Specifications at Ta = 25C
Sym bol P a r a m e te rs : T e s t C o n d itio n s : Id = 7 0 m A , Z 0 = 5 0 O h m s S m a l l S i g n a l P o w e r G a in f = 0 .1 -2 .0 G H z f = 2 .0 -6 .0 G H z f = 6 .0 -8 .0 G H z f = 0 .1 -6 .0 G H z U n its dB dB dB dB GHz f = 2 .0 G H z f = 2 .0 G H z f = 0 .1 -8 .0 G H z f = 2 .0 G H z f = 2 .0 G H z f = 0 .1 -8 .0 G H z dBm psec dB V d B /d e g C m V /d e g C 4 .3 dBm dB M in . 11 .0 1 0 .0 9 .0 Ty p . 1 3 .0 1 2 .0 11 .0 + /- 1 .0 8 .0 1 7 .0 5 .5 1 .5 :1 3 4 .0 120 1 8 .0 5 .0 -0 .0 0 2 7 -5 .0 5 .7 6 .0 M ax.
G
P
G
F
G a in F la tn e s s 3 d B B a n d w id th O u tp u t P o w e r a t 1 d B C o m p r e s s io n N o is e F ig u re In p u t / O u tp u t T h ir d O rd e r In te r c e p t P o in t G r o u p D e la y R e v e r s e I s o la t i o n D e v ic e V o lta g e D e v ic e G a in T e m p e r a t u r e C o e ff ic ie n t D e v ic e V o lta g e Te m p e r a t u r e C o e ff ic ie n t
BW 3dB P
1dB
NF VSW R IP T
3
D
IS O L VD d G /d T d V /d T
The information provided herein is believed to be reliable at press time. Stanford Microdevices assumes no responsibility for inaccuracies or omissions. Stanford Microdevices assumes no responsibility for the use of this information, and all such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. Stanford Microdevices does not authorize or warrant any Stanford Microdevices product for use in life-support devices and/or systems. Copyright 1999 Stanford Microdevices, Inc. All worldwide rights reserved.
522 Almanor Ave., Sunnyvale, CA 94086
Phone: (800) SMI-MMIC
http://www.stanfordmicro.com
5-57
SNA-476 DC-8 GHz Cascadable MMIC Amplifier Typical Performance at 25 C (Vds = 5.0V, Ids = 70mA)
|S11| vs. Frequency
0 -5 -10
|S21| vs. Frequency
16 14
dB
-15 -20 -25 0.1 0.5 1 1.5 2 4 6 8 10
dB
12 10 8 0.1 0.5 1 1.5 2 4 6 8 10
GHz
GHz
|S12| vs. Frequency
0 -5 -10
0 -5 -10
|S22| vs. Frequency
dB
-15 -20 -25 0.1 0.5 1 1.5 2 4 6 8 10
dB
-15 -20 -25 0.1 0.5 1 1.5 2 4 6 8 10
GHz
GHz
50 Ohm Gain Blocks
Noise Figure vs. Frequency
7 38 36 6 34 32 30 4 0.1 2.0 4.0 6.0 8.0 28 0.1 0.5
TOIP vs. Frequency
dB
5
dBm
1
1.5
2
4
6
8
10
GHz
GHz
Typical S-Parameters Vds = 5.0V, Id = 70mA
Freq GHz .100 .250 .500 1.00 1.50 2.00 4.00 6.00 8.00 |S11| 0.205 0.233 0.282 0.295 0.302 0.290 0.150 0.164 0.275 S11 Ang 148 136 120 64 6 -46 74 -52 161 |S21| 5.268 5.124 4.891 4.793 4.746 4.774 3.740 3.331 2.973 S21 Ang 176 166 139 101 60 21 57 61 -109 |S12| 0.112 0.111 0.119 0.118 0.117 0.117 0.104 0.151 0.100 S12 Ang 0 9 -29 -55 -87 -113 7 -2 -115 |S22| 0.141 0.157 0.185 0.207 0.227 0.231 0.222 0.130 0.190 S22 Ang 160 150 121 68 13 -37 -90 1 147
(S-Parameters include the effects of two 1.0 mil diameter bond wires, each 20 mils long, connected to the gate and drain pads on the die)
522 Almanor Ave., Sunnyvale, CA 94086
Phone: (800) SMI-MMIC
http://www.stanfordmicro.com
5-58
SNA-476 DC-8 GHz Cascadable MMIC Amplifier
Absolute Maximum Ratings
P a r a m ete r A b s o lu te M a xim u m
Part Number Ordering Information
Part Number Devices Per Reel Reel Size
SNA-476-TR1 D e vic e C urre nt Po w e r D issipa tion R F In p ut Po w er Ju n ction Te m p e ra ture O p e ra tin g Te m p e ra tu re Sto ra g e Te m pe ra tu re 1 0 0m A 5 6 0m W 2 0 0m W +2 0 0 C -4 5 C to +8 5 C -6 5 C to +1 5 0 C SNA-476-TR2 SNA-476-TR3
1000 3000 5000
7" 13" 13"
R e c o m m e n d e d B ia s R e s is to r Va lu e s
Notes:
1. Operation of this device above any one of these parameters may cause permanent damage.
Supply Voltage(V s) R bias (O hm s)
5V *
7.5V 36
9V 57
12V 100
15V 143
20V 214
* Needs active biasing for constant current source
MTTF vs. Temperature @ Id = 70mA
Lead Temperature Junction Temperature +155C MTTF (hrs)
6.0
+45C
1000000
+80C
+190C
100000
5.0
+110C +220C 10000
50 Ohm Gain Blocks
Thermal Resistance (Lead-Junction): 315 C/W
Typical Biasing Configuration
Pin Designation
1 2 3 4
RF in GND RF out and Bias GND
Typical Performance at 25 C
Power Gain vs. Device Current
14 13 12 5.5 5
90mA
Device Voltage vs. Id
dB
11 10
Vdc 4.5
80mA 70mA
4 3.5 45 50 60 65 70 75 80
50mA
60mA
9 2 4 6 8
GHz
mA
522 Almanor Ave., Sunnyvale, CA 94086
Phone: (800) SMI-MMIC
http://www.stanfordmicro.com
5-59


▲Up To Search▲   

 
Price & Availability of SNA-476-TR3

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X